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Labor is an essential and costly input in fruit production 
since many cultivation practices (e.g., harvesting, 
pruning, thinning, fertilizing, and chemical spraying) are 
still mainly performed by hand (Gallardo and Sauer, 
2018; Karkee, Silwal, and Davidson, 2018). Labor 
expenditures comprise about 38.5% of the variable costs 
in fruit production in the United States (Castillo et al., 
2021). 
 
Fruit growers continually bear the risk of labor shortages 
during critical production seasons due to inadequate 
supply of seasonal workers or labor market frictions 
(Luckstead and Devadoss, 2019; Devadoss, Zhao, and 
Luckstead, 2020). A harvest delay of even a few days 
can reduce the quality of fruits and diminish the value of 
harvested fruit. Long delays in harvesting can cause 
growers to lose their entire crop (Calvin and Martin, 
2010). Due to chronic labor shortage, fruits in numerous 
orchards are not picked, further exacerbating profit loss 
(Devadoss and Luckstead, 2011; Devadoss, 2021). 
 
Because of the uncertainty of labor availability during 
critical seasons of fruit production and the rising cost of 
farm labor in the United States, growers increasingly 
need mechanized operations for chemical application, 
weeding, pruning, thinning, and harvesting. This article 
discusses the required changes in orchard management 
to accommodate automated harvesting. Specifically, we 
describe the potential for automating fruit harvesting in 
orchards, the biological and technical requirements, and 
the challenges. In the second article of this theme, we 
present similar challenges and opportunities in 
automating canopy and crop-load management 
operations in fruit crops, such as pruning and flower 
thinning (Karkee  et al., 2025). 
 
Although commercial tree-fruit harvesting has not yet 
been performed robotically, if the cost of labor continues 
to rise or the availability of seasonal farm workers 
becomes sufficiently uncertain, the robotization of 
commercial fruit harvesting is expected to become 
economically feasible for different fruits in the near future 
(Charlton et al., 2025). Engineers continue to improve 

the harvesting technologies so that their efficiency is 
comparable to manual operations. 
 

Orchard Management 
Unlike manual harvesting, mechanical harvesting 
requires careful orchard planning and grove preparation. 
This section summarizes various practices needed, 
many of which growers have implemented to utilize 
mechanized technologies effectively. Several grove 
preparation shapes minimize the canopy’s bushy nature 
so that mechanical harvesters can more easily detect 
and reach the fruit. Generally, a V-shaped or vertical 
canopy is highly conducive to robotic harvesting of fruits. 

 

Canopy Architectures 
Crop architectures represent the geometric 
characteristics of tree canopies in three-dimensional 
(3D) space that define how trunks, branches, and 
subbranches are grown, trained, and organized within a 
given tree and orchard block. Currently, available fruit 
tree canopy structures can broadly be divided into two 
categories: random fruit tree canopies and fruiting-wall 
canopies. 
 
Random fruit tree canopies include a central trunk and a 
set of primary and secondary branches growing naturally 
in random directions, creating a bushy structure. 
Conventionally, these canopies would be expanded into 
tall and wide structures with a strong central leader or a 
few smaller leaders growing in different directions. In 
these conventional architectures, trees are planted at 20 
feet or wider spacing to allow for enough spacing 
between trees that can grow up to 5 meters or more 
(University of Maine Cooperative Extension, 2024). 
 
Newer random architectures such as KGB (Kim Green 
Bush) cherries (Long et al., 2015; Figure 1a) have been 
planted around the world as they provide a balance 
between the labor input in training and pruning and the 
overall crop production (yield and quality). The major 
challenge random canopies present to mechanized 
operations is the thickness of these canopies. Various 
canopy objects, such as fruit and branches, grow in the  
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deeper parts of the canopies and can be heavily 
occluded by other branches, thus limiting the overall 
efficiency of mechanized operations. 

 
Fruiting-wall canopies are grown in a more vertical 
structure to improve yield, quality of fruit, and 
productivity of workers who harvest and perform orchard 
care. These architectures are created using meticulous 
training and pruning efforts that keep the canopy depth 
narrow, often within 2 feet (Karkee, Silwal, and 
Davidson, 2018). Tree height is also maintained 
generally below 12 feet. Trellis wires support the trunks, 
and branches are allowed to grow laterally. Rootstocks 
play a key role in creating the short and narrow dwarf 
trees needed for maintaining fruiting wall architectures. 
In addition, careful pruning is used to keep the overall 
canopy depth low. These canopy structures are called 
SNAP (simple narrow accessible productive) 
architectures. 
 
Some of the most accessible and productive fruiting wall 
canopies have been achieved through systems such as  
 

 
formal training (Caruso et al., 2015; Figure 1b) and UFO  
(upright fruit offshoot; Whiting, 2008). In a formal training 
system, primary branches from vertical trunks are 
trained along horizontal trellis wires, and short 
secondary branches are grown from the  
horizontal branches for fruiting. Horticulturists and  
growers constantly experiment with new designs that 
could offer even better canopy architectures for future 
robotic systems. Advanced fruiting wall architectures 
provide improved accessibility and present an 
opportunity for developing automated/robotic solutions 
for various orchard operations. 
 
Any type of fruiting wall could be trained to create either 
a vertical or an angled canopy. Angled canopy structures 
create two fruiting surfaces or walls per row of trees 
(e.g., Y-shaped or V-shaped trees). Working with Fuji 
apples, Galinato and Gallardo (2016) found that V-
shaped trees can produce about 20% more fruit due to 
increased tree density and improved exposure to 
sunlight. 
 
 

 

Figure 1. Canopy Architecture 
(a)                                                                   (b) 

 
 

       
 

 
Notes: a) A typical cherry orchard trained to KGB (Kim Green Bush) architecture in a commercial orchard in Tasmania (Karkee, 
Silwal, and Davidson, 2018). b) A formally trained fruiting wall apple orchard (V-shaped) with layers of fruit growing along the 
horizontal branches trained to trellis wires. (Photo by Manoj Karkee.) 

 

Figure 2. Robotic Fruit Harvesting Technologies 
 

                   (a) FF Robotics apple harvest          (b) Harvest CROO Robotics strawberry harvester. 
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Further, anecdotal grower experiences (based on the 
authors’ personal conversations with many growers in  
central Washington) have indicated increases in fruit 
yield of up to 30% (with similar fruit quality) when using 
angled canopies compared to vertical canopies. 
However, the angled canopies are more challenging for 
robotic operations, as branches, flowers, and fruit could 
grow on the back side of the fruiting walls, which a robot 
would have difficulty reaching. 

 

Robotic Fruit Harvesting Technologies 

Harvesting is among the most labor-intensive operations 
in fresh-market fruit production. Robotic harvesting, 
therefore, has the potential to substantially minimize 
dependence on farm labor in the fruit industry. The 
technical feasibility of robotic fruit picking was 
demonstrated almost 40 years ago (Harrel and 
Slaughter., 1985), when researchers used a camera to 
detect fruits and a robot arm with a gripper to pick them 
(Figure 2a). Many fruit-harvesting robots have since 
been built. Until the early 2000s, most of them were 
developed in academic labs (Bac et al., 2014). 
 
In recent years, start-up companies worldwide have 
been developing fruit harvesting robots, focusing on 
high-value fruit crops such as apples, strawberries, and 
kiwis (examples in Figure 2b). However, existing 
prototypes are not cost-effective for commercial use. 
 
Apart from the harvester purchase price, the two 
operational performance parameters that most heavily 
influence harvest cost are 1) fruit picking efficiency 
(FPE), which is the ratio of fruits successfully picked 
over the total number of harvestable fruits, and 2) fruit 
pick cycle time (PCT), which is the average number of 
seconds between successive fruit picks (Harrell, 1987). 
The FPE and PCT parameters depend on orchard 
layout, tree canopy structure (branches and foliage), 
spatial fruit distribution, and harvester software and 

hardware. Next, we present the steps of the harvesting 
process and discuss how they contribute to the FPE and 
PCT and why achieving high FPEs and low PCTs is very 
challenging. 
 
A robot arm harvests fruits by repeatedly carrying out the 
following steps: 

1. Perceive (detect and localize) a fruit that needs 
to be picked (based on color/ripeness/size). 
Perception typically relies on monocular or 
stereo cameras, computer vision, and deep- 
learning algorithms. The successful execution of 
this step depends on fruit visibility and the 
perception system’s detection capability. It can 
be represented by the perception efficiency ηp 
(i.e., the percentage of marketable fruits that are 
detected and localized). Fruit visibility is limited 
primarily by occlusions introduced by the canopy 
(e.g., leaves, branches). Estimates of visibility 
for citrus trees from a single viewpoint have 
been reported to lie in the range of 40%–70% 
(Jimenez, Ceres, and Pons, 2000) and 78%–
92% for V-trellis apple trees (Salisbury and 
Steere, 2017). Detection efficiencies as high as 
ηp = 0.98 have been reported for litchi fruits, 
although lower values of ηp are not uncommon 
for most fruits (Tang et al., 2020). Perception 
speed can be represented by the average 
perception time per fruit, Tp, which is typically a 
very small number compared to the durations of 
other steps because perception systems localize 
many fruits simultaneously. 
 

2. Starting from the current arm position, approach 
and reach the fruit, stopping at a position where 
the gripper can detach it. Inefficiencies and 
delays in this step stem from fruit inaccessibility 
due to obstruction by the canopy or its support 
structure and mechanical robot design,  
 

 

Figure 3. Robots 
 
                           (a)                                                     (b)                                                      (c) 
  
 

            
 

 
Notes: a) Advanced Farm cylindrical robot arm. b) Abundant Robotics parallel arm. c) FF Robotics linear arm. 
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kinematics, dynamics, and control. Efficiency  
can be quantified by the reachability ηr 
(percentage of fruits detected in step 1 that are 
reachable by the robot’s end-effector). Speed 
can be represented by the required average 
time to perform the entire step, Ta. Most 
industrial prototypes have developed fast 
cylindrical, parallel/delta, or linear arms (Figure 
3) to move the wrist-gripper assembly near the 
fruit and 1- to 3-degree-of-freedom wrist designs 
to orient the gripper with respect to the fruit while 
avoiding collisions with obstacles. 
 

3. Detach the fruit using the end-effector. The 
effectiveness of this step depends on fruit-stem-
tree characteristics, gripper design, and control. 
Often, the arm is guided by a camera (visual-
serving) as it closes on the fruit to compensate 
for inaccuracies or changes in fruit positioning. 
Performance can be expressed by the 
detachment efficiency, ηd (i.e., the ratio of safely 
detached fruits—not dropped or damaged by the 
gripper during the detaching process—to the 
number of fruits reached during step 2). The 
speed of this step can be represented by the 
required average time, Td. Various gripper 
designs have been proposed, ranging from 
suction tubes to hard and soft multifingered 
hands (Vrochidou et al., 2022). 
 

4. Retract the arm carrying the fruit to the current 
position and transport it to a place where it can 
be emptied in a conveyance system. This step 
relies on machine design and can be 
characterized by a retraction efficiency, ηrt, and 
a conveyance efficiency, ηt, which quantify 
respectively the percentage of detached fruits 
(end of step 3) that are transported safely (i.e., 
are not dropped or damaged) at the input of the 
conveyance system and the percentage of fruits 
that are conveyed in the bin without damage. 
Speed can be represented by the required 
average retraction time Trt because conveyance 
is typically not coupled to the arm’s next pick 
cycle and hence does not introduce delays in 
the arm operation. 

Given the above steps, single-arm FPE and PCT can be 
expressed as 
 

(1)  FPE = 𝜂𝑝 𝜂𝑟𝜂𝑑𝜂𝑟𝑡𝜂𝑡  
and  

(2) PCT = 𝑇𝑝 + 𝑇𝑎 + 𝑇𝑑 + 𝑇𝑟𝑡. 

 
Equations (1) and (2) show that picking efficiency is a 
product of several efficiency factors. Therefore, 
achieving a high value is challenging, as even one 
“mediocre” factor can severely reduce FPE. For 
example, even if all five factors achieved 95% efficiency, 
the overall FPE would be only 77%. The reported FPEs 

in the literature for single-arm robots harvesting apple or 
citrus trees range from 50% to 84%, and PCTs (per fruit, 
not averaged) range from 3 to 14.3 seconds between 
successive fruit picks (Bac et al., 2014). The company 
Advanced Farm has reported that their six-arm apple 
harvester prototype has achieved FPEs of 40%–90% 
when picking on a trellis system; the more uniformly 
trained the trees are, the higher the achieved FPE. 
 

Challenges and Opportunities 

As discussed previously, there has been a wide range of 
research and development in automating harvesting in 
fruit crops. However, no robotic solutions have been 
commercially adopted in tree fruit crops so far. 
Generally, this lack of commercial adoption can be 
attributed to the following significant challenges: 

1. Inadequate speed, accuracy, efficiency, and 
simplicity for economic affordability. Robotic 
solutions developed for fruit harvesting are 
generally still slow, lack the required accuracy 
and robustness that are vital for operational 
efficiency, and are usually too complex and 
costly to offer a desired level of labor-saving 
while also ensuring economic feasibility for 
commercial adoption. 
 

2. Limited scalability and reusability. Tree fruit 
crops have diverse and relatively unstructured 
canopy architectures and a high degree of 
biological variability, making it difficult to develop 
automated solutions that can adapt to different 
orchard environments. 
 

3. High investment capital and risk. Developing 
and implementing automated solutions for tree 
fruit crops requires significant financial 
investment, with higher risks due to uncertainties 
and variabilities in performance and the 
acceptance and adoption of the technology by 
workers, growers, and consumers. 

Researchers and technology companies worldwide are 
addressing some or all of these challenges through 
systems approaches in which biological scientists, 
physical scientists, engineers, and socioeconomic 
scientists come together to develop technically viable 
and economically feasible solutions. Challenge 1 is 
addressed primarily through engineering advances in 
sensing, actuation, controls, and engineering design. 
Challenge 2 requires a systems approach in which 
innovations in breeding and horticultural practices 
reduce the crops’ complexity, variability, and frailness, 
rendering them more “friendly” to mechanization, and 
advances in engineering enable robots to compensate 
for the remaining complexity, variability, and frailness. 
Machine-friendlier crops will also benefit Challenge 1. 
Challenge 3 also requires a systems approach that 
addresses the industry’s concerns and reduces the 
development and commercialization risks. With further 
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improvements in fruit tree canopies, such a system is 
expected to improve the commercial viability of robotic 
solutions for orchards. Recent advancement in artificial 
intelligence (AI) technologies—including deep learning, 
sensing and data analytics techniques, parallel  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

computing, and robotic technologies such as soft 
robotics—also offers new possibilities for developing 
optimized and robust robotic solutions for the future of 
the tree fruit industry. 
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