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Farm labor shortages and increasing costs represent 
significant challenges to specialty crop production. Fruit 
production in particular involves numerous labor-
intensive tasks that must be carried out within a limited 
time. Fruit growers rely heavily on a diminishing 
workforce of migrant workers and a smaller number of 
temporary, H-2A guest workers (Devadoss and 
Luckstead, 2008; Devadoss and Luckstead, 2018; 
Devadoss and Luckstead, 2019). However, bureaucracy, 
unnecessary delays, and higher costs make it difficult for 
farmers to rely on the H-2A program (Luckstead and 
Devadoss, 2019; Devadoss, 2021). As a result, fruit 
growers are in dire need of labor-saving technologies to 
mechanize labor-intensive operations such as pruning, 
thinning, and harvesting. 
 
Researchers and farmers have developed and adopted 
machine-friendly orchard architectures that feature tall 
and narrow tree canopies supported by trellis systems 
that are planted in high-densities (i.e., fruit wall canopy 
architectures). Such orchard architectures make it easier 
for machines—and humans—to access the limbs, 
flowers, and fruits in tree canopies. The orchard 
management strategies to create these architectures 
were discussed in Vougioukas et al. (2025). These 
fruiting-wall architectures support automation, but they 
also increase labor demand for tree training and pruning, 
thus increasing the overall labor use. To address these 
challenges, active research and development activities 
are in progress to automate pruning, thinning, and 
harvesting. This article focuses on the current status of 
automation in pruning and thinning fruit trees. 
 

Automation in Tree Pruning 

Each year, a proportion of branches in fruit trees are 
removed to improve overall tree health and productivity. 
The selection of branches is dictated by spacing 
between branches, age, length, diameter (size), and 
branches’ health and productivity. Selective removal of 
branches encourages new growth of more productive 
branches, increases airflow, and reduces the number of 
fruiting sites for a more optimal crop load. Pruning also 
helps improve the distribution of fruiting sites over the 
entire canopy to maximize fruit yield and quality. 

Increasingly, improved accessibility to canopy parts such 
as blossom and fruit is considered a factor influencing 
the pruning decision since it simplifies the development 
of robotic machines for downstream operations such as 
blossom thinning and harvesting. For example, removing 
fruiting branches that are growing straight into or out of 
the canopies and those growing next to trunks, trellis 
wires, and trellis posts helps improve the performance of 
robotic harvesting systems. 
 
The overwhelming majority of fruit tree pruning is 
performed manually. To minimize the dependence on 
labor, tree-hedging machines have been adopted by 
some growers in the United States and elsewhere (see 
Figure 1a). These mass—nonselective—pruning 
machines have often been used to remove long 
branches in modern fruiting-wall orchards (see Figure 
1b). Mechanical mass-pruning is often followed by 
manual pruning to selectively remove unwanted 
branches. Some growers have also used machine and 
manual pruning in alternate years, as a strategy to 
reduce overall cost and achieve some level of precision 
in pruning. The overall benefit of using these machines, 
however, is marginal to nonexistent (Mika, Buler, and 
Treder, 2016). Consequently, commercial adoption of 
mass-pruning machines has stagnated. 
 
Automated or robotic technologies offer a promising 
alternative to manual pruning. Recognizing this 
opportunity, researchers have developed perception 
systems and prototype robots for fruit tree pruning over 
the last two decades. The first step is to use a three-
dimensional (3D) sensor (e.g., a laser scanner or a 3D 
camera) to capture points on the surface of dormant 
trees and then use these points to create a geometric 
model of the trunk and branches (Livny et al., 2010; 
Tabb, 2013; Elfiky et al., 2015; Akbar, Elfiky, and Kak, 
2016; Medeiros et al., 2017). The second step is to use 
the generated geometric models and existing 
horticultural knowledge/pruning rules to calculate the 
positions of the pruning points and execute the cuts 
using a robotic arm and tool (e.g., Karkee et al., 2014). 
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The 3D imaging and model generation techniques have 
shown great promise but are often challenged by 
variable lighting conditions, changing and variable 
backgrounds, and the type and size of tree trunks and 
branches. 
 
To address those challenges, deep-learning-based 
approaches have been proposed in recent years, with 
more promising results for the reconstruction of fruit 
trees and its use in developing pruning rules and 
manipulating robots. For example, Borrenpohl and 
Karkee (2023) developed an instant-segmentation model 
using Mask R-CNN (a deep learning network) to detect 
trunk and primary branches in upright fruiting offshoot 
(UFO) cherry orchards. 
 
In recent years, integrated robotic systems have been 
developed and tested in field environments by utilizing 
the latest perception techniques and various types of 
manipulator (arm) and end-effector (hand) technologies. 
A team of researchers at Pennsylvania State University 
has been developing a Cartesian manipulator-based 
robot to prune apple trees in fruiting-wall orchards (Zahid 
et al., 2020). This team demonstrated that a custom-built 
manipulator and end-effector could prune apple tree 
branches up to 25 millimeters in diameter with varying 
branch orientations. Similarly, a team of researchers 
from Oregon State University, Washington State 
University, and Carnegie Mellon University has been 
developing and evaluating prototype robotic systems for 
apple and cherry tree pruning. This prototype was first 
tested in February 2022 in a research orchard at 
Washington State University (You et al., 2022; Figure 
2b). This robotic system utilized a deep-learning-based 
perception system to recreate 3D structure of canopies, 
tree pruning strategies learned from experts (including  

 
horticulturists and growers) to determine the cutting 
points, and a scissor (as an end-effector) attached to a 
commercial robot arm (UR5, Universal Robotics). The 
first field evaluation showed a pruning success rate of 
58% in a modern UFO orchard. 
 
Though numerous research teams have been working 
on robotic pruning, none of the prototypes have been 
commercialized yet. The main reasons are inadequate 
speed, accuracy, and robustness, while factors such as 
cost and complexity are also important. Researchers are 
investigating methods to learn pruning strategies and 
rules from human workers and develop human-robot-
canopy interaction and collaboration techniques to 
address these challenges. 
 

Automation in Blossom and Fruitlet 
Thinning 

Tree fruit crops such as apples and cherries often exhibit 
over-cropping (i.e., they produce more flowers and set 
more fruit than needed). Over-cropping leads to smaller 
fruit size, diminished color, lower sugar content, depleted 
tree carbohydrate reserves, and negative effects on 
canopy health and productivity, including reduced return 
bloom (flower density in the following year) due to 
competition among fruits. Managing crop load is 
achieved by blossom and green fruit (or fruitlet) thinning. 
The target is to find a balance between reducing the 
number of fruits per tree and achieving satisfactory yield, 
quality, and return bloom (Robinson, Lakso, and Greene, 
2014). While some fruitlet thinning occurs naturally, 
additional thinning during bloom and early fruit growth 
stages is essential to achieve desired levels of thinning. 
Flower and fruitlet thinning can also reduce fruit 
clustering, improve the uniformity of fruit distribution, and 

 

Figure 1. Pruning Machine Examples 
 

(a)                                                                   (b) 
 

 

       
 

 
Notes: a) A mass pruning machine with a saw-tooth cutter driven by a tractor (Adapted from He and Schupp, 2018). 
b) A robotic selective pruning machine (developed by a team of researchers from Oregon State University, Washington State 
University, and Carnegie Mellon University) being tested in a UFO cherry orchard for selective pruning. 
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remove fruit from difficult-to-reach locations (e.g., behind 
trellis wires), thus improving the efficiency of robotic 
harvesting (as discussed in Vougioukas et al., 2025). 
 

Current Blossom Thinning Methods 

As discussed previously, blossom thinning is an 
important method to decrease fruit set, enhance fruit 
quality, and encourage return bloom in the subsequent 
year. Blossom thinning is currently performed manually, 
chemically, or mechanically. 
 

Manual blossom thinning, typically done when the 
blooms are in the “popcorn” stage (before they open 
fully), effectively reduces heavy bloom. However, it is 
labor-intensive and costly and is practiced primarily on 
high-value cultivars, when higher returns can 
compensate for the increased cost. 
 
Chemical blossom thinning is typically conducted using 
an air-blast sprayer during the bloom and post-bloom 
stages. Bloom thinners attempt to damage flowers and 
their parts, inducing stress in the plant and helping 
reduce the fruit set. A combination of lime sulfur and fish 
oil, carbaryl, and ammonium thiosulfate are common 
materials sprayed for the chemical thinning of apples 
and cherries (e.g., Miller and Tworkoski, 2010). The 
efficacy of chemical thinning varies significantly 
depending on the chemical used, tree age, bloom 
density, foliage condition, tree carbohydrate supply, and 
weather parameters such as temperature and humidity 
(Robinson, Lakso, and Greene, 2014). Recent 
advancements and commercialization of precision 
chemical application systems, such as the one from 
Robotics Plus (Bethlehem, New Zealand), offer the 

potential for improved efficiency in targeting blossoms 
with thinning agents. However, the challenge of variable 
thinning efficiency remains. 
 
Mechanical thinning devices include string thinners 
(handheld or tractor-mounted) that involve rotating 
strings to strike the tree branches with excess flowers. 
Figure 2a shows Darwin Thinner, a tractor-pulled 
machine (Deggenhausertal, Germany). The timing and 
intensity of thinning operations are two critical elements 
for achieving optimal results with mechanical thinners. 
Handheld devices offer more precision and control but 
are labor-intensive. Tractor-mounted thinners provide 
greater efficiency and cost benefits in large-scale 
operations (27-33% faster; Schupp and Kon, 2014) over 
handheld devices. However, mechanical thinning can 
cause physical damage to the tree limbs and fruiting 
spurs, does not apply to unstructured bushy tree 
architectures, and does not provide the capability for 
targeted and selective thinning (Zhang, Xi, and Chen Du, 
2018). Recent advancements in automating mechanical 
thinning systems will be discussed later. 
 

Current Fruitlet Thinning Methods 
Fruitlet thinning is performed manually or using a 
shaking machine. Shaking machines such as the USDA 
double-spiked drum shaker vibrate branches to remove 
a portion of fruitlets. Like blossom thinning, mechanical 
fruitlet thinning that is not selective may cause damage 
to canopy parts and is not highly consistent. In contrast, 
manual thinning is highly selective but also labor-
intensive and costly. New research and development in 
robotic approaches show promise for selective 
mechanical fruitlet thinning. 
 

 

Figure 2. Mechanical Thinner Examples 
 

(a)                                                                   (b) 
 

 

       
 

 
Notes: a) A tractor-mounted Darwin string machine used to thin apple blossoms on a fruit wall at the Lamont Fruit Farm in Waterport, 
New York (by R.J. Anderson/Cornell Co-Operative Extension, Anderson, 2017).  
b) A prototype robot being tested for selective flower cluster thinning in a commercial apple orchard (by Washington State University; 
Bhattarai et al., 2023). 
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Advancement in Blossom and Fruitlet Thinning 

Mechanical thinners lack the desired precision and 
therefore have not been adopted widely. As an 
alternative, researchers have been investigating robotic 
systems for blossom and fruitlet thinning. Similarly to 
robotic pruning, a perception system detects and 
localizes flowers and estimates flower density, and a 
specifically designed thinning end-effector or tool 
executes the thinning. Lyons et al. (2015) integrated 
machine vision with a commercial thinner (the Darwin) 
for blossom thinning. Others have developed deep-
learning perception algorithms used in combination with 
custom robot arms and tools or commercial arms for 
blossom thinning (e.g., Bhattarai, Zhang, and Karkee, 
2023, Figure 2b). Achieving adequate efficiency and 
speed is a significant challenge for robotic thinning. 
Engineers work on perception, robot design, and control 
to address these challenges. Bhattarai, Zhang, and 
Karkee (2023) reported up to 60% flower removal with a 
6-second cycle time (time taken per flower cluster). 
However, better performance is required if robots are to 
be used for commercial thinning. 
 
Perception is one of the most critical components of a 
robotic thinning system. As flowers and fruitlets occupy a 
tiny area in the images, (Bhattarai, Zhang, and Karkee, 
2023) reported higher detection accuracy of flower  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

clusters when canopies were imaged from a distance of 
0.5 meters compared to when imaged from a distance 1 
meter. Increased image resolution, however, adds a 
computational burden. Researchers are working on the 
speed/accuracy trade-off to find an optimal solution. For 
an effective and efficient movement of thinning tools in 
and around tree canopies, various canopy parts such as 
branches, tree trunks, leaves, and trellis wires need to 
be detected to avoid obstacles while reaching the target 
blossom or fruitlet for thinning. More studies are being 
conducted around the world to detect various canopy 
parts and determine the hardness of these obstacles. In 
addition, researchers are focusing on developing more 
effective thinning hands or tools to improve the practical 
adoption of robotic solutions for crop thinning. 
 

Summary 

Finding adequate workers to perform labor-sensitive 
tasks has become increasingly more challenging for fruit 
growers. Successful development of cost-efficient robots 
to prune and thin fruit trees will help growers mitigate 
their reliance on farm workers. Researchers have been 
developing and testing AI-empowered machine vision 
and robotic machines for pruning and thinning tree fruit 
crops. However, wider commercial adoption of these 
techniques is yet to be realized. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Choices Magazine 14 
A publication of the Agricultural & Applied Economics Association 

 

For More Information 
 
Akbar, S.A., N.M. Elfiky, and A. Kak. 2016. “A Novel Framework for Modeling Dormant Apple Trees Using Single Depth 

Image for Robotic Pruning Application.” Paper presented at the IEEE International Conference on Robotics and 
Automation (ICRA), pp. 5136–5142. 

 
Anderson, R.J. 2017. “Cornell Extension, New York state apple growers partner on innovation.” Cornell Co-Operative 

Extension. https://fruitgrowersnews.com/news/cornell-extension-new-york-state-apple-growers-partner-innovation/ 
[Accessed February 26, 2025]. 

 
Bhattarai, U., Q. Zhang, and M. Karkee. 2023. “Design, Integration, and Field Evaluation of a Robotic Blossom Thinning 

System for Tree Fruit Crops.” Journal of Field Robotics 41(5): 1366-1385 
 
Borrenpohl, D., and M. Karkee. 2023. “Automated Pruning Decisions in Dormant Sweet Cherry Canopies Using Instance 

Segmentation.” Computers and Electronics in Agriculture 207: 107716. 
 
Devadoss, S., 2021. “Theme Overview: Trends and Challenges in Fruit and Tree Nut Sectors.” Choices 36(2):1–3. 
 
Devadoss, S., and J. Luckstead. 2008. “Contribution of Immigrant Farm Workers to California Vegetable Production.” 

Journal of Agricultural and Applied Economics 40(3):879–894. 
 
———. 2018. “U.S. Immigration Policies and Dynamics of Cross-Border Workforce in Agriculture.” World Economy 

41(9):2389–2413. 
 
———. 2019. “Theme Overview: The Role of Guest Workers in U.S. Agriculture.” Choices 34(1): 1–3. 
 
Elfiky, N.M., S.A. Akbar, J. Sun, J. Park, and A. Kak. 2015. “Automation of Dormant Pruning in Specialty Crop Production: 

An Adaptive Framework for Automatic Reconstruction and Modeling of Apple Trees.” In Computer Vision and 
Pattern Recognition Workshops (CVPRW), 2015 IEEE Conference. IEEE, pp. 65–73. 

 
He, L., and J. Schupp. 2018. “Sensing and Automation in Pruning of AppleTrees: A Review.” Agronomy 8(10): 211. 
 
Karkee, M., B. Adhikari, S. Amatya, and Q. Zhang. 2014. “Identification of Pruning Branches in Tall Spindle Apple Trees 

for Automated Pruning.” Computers and Electronics in Agriculture 103:127–135. 
 
Livny, Y., F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana. 2010. “Automatic Reconstruction of Tree Skeletal 

Structures from Point Clouds.” In ACM SIGGRAPH Asia 2010 papers, pp. 1–8. 
 
Luckstead, J., and S. Devadoss. 2019. “The Importance of H-2A Guest Workers in Agriculture.” Choices 34(1):4–11. 
 
Lyons, D., P.H. Heinemann, J.R. Schupp, T.A. Baugher, and J. Liu. 2015. “Development of a Selective Automated 

Blossom Thinning System for Peaches.” Transactions of the ASABE 58(6):1447–1457. 
 
Medeiros, H., D. Kim, J. Sun, H. Seshadri, S. A. Akbar, N.M. Elfiky, and J. Park. 2017. “Modeling Dormant Fruit Trees for 

Agricultural Automation.” Journal of Field Robotics 34(7):1203–1224. 
 
Mika, A., Z. Buler, and W. Treder. 2016. “Mechanical Pruning of Apple Trees as an Alternative to Manual Pruning.” Acta 

Scientiarum Polonorum Hortorum Cultus 15(1):113–121. 
 
Miller, S. S., and T. Tworkoski. 2010. “Blossom Thinning in Apple and Peach with an Essential Oil.” HortScience 

45(8):1218–1225. 
 
Robinson, T., A. Lakso, and D. Greene. 2014. “Precision Crop Load Management: The Practical Implementation of 

Physiological Models.” International Symposium on Physiological Principles and Their Application to Fruit 
Production 1177: 381–390. 

 

https://fruitgrowersnews.com/news/cornell-extension-new-york-state-apple-growers-partner-innovation/


Choices Magazine 15 
A publication of the Agricultural & Applied Economics Association 

Schupp, J.R., and T.M. Kon. 2014. “Mechanical Blossom Thinning of ‘Goldrush’/m. 9 Apple Trees with Two String Types 
and Two Timings.” Journal of the American Pomological Society 68(1):24–32. 

 
Tabb, A. 2013. “Shape from Silhouette Probability Maps: Reconstruction of Thin Objects in the Presence of Silhouette 

Extraction and Calibration Error.” In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 161–168. 

 
Vougiokas, S., M. Karkee, S. Devadoss, R.K. Gallardo, and D. Charlton. 2025. “Mechanization Efforts in Fruit Harvesting.” 
 Choices 40(1):1-8. 
 
You, A., N. Parayil, J.G. Krishna, U. Bhattarai, R. Sapkota, D. Ahmed, M. Whiting, M. Karkee, C.M. Grimm, and J. R. 

Davidson. 2022. “An Autonomous Robot for Pruning Modern, Planar Fruit Trees.” arXiv preprint 2206.07201. 
 
Zahid, A., M.S. Mahmud, L. He, D. Choi, P. Heinemann, and J. Schupp. 2020. “Development of an Integrated 3R End-

Effector with a Cartesian Manipulator for Pruning Apple Trees.” Computers and Electronics in Agriculture 
179:105837. 

 
Zhang, C., Z.C. Xi, and C.D. Chen Du. 2018. “Precise Crop Load Management.” In Q. Zhang (ed.), Automation in Tree 

Fruit Production: Principles and Practice. CABI, pp. 161–178. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
©1999–2025 CHOICES. All rights reserved. Articles may be reproduced or electronically distributed as long as attribution 
to Choices and the Agricultural & Applied Economics Association is maintained. Choices subscriptions are free and can 

be obtained through http://www.choicesmagazine.org. 

About the Authors: Manoj Karkee (manoj.karkee@wsu.edu) is a Professor of Biological Systems Engineering, at 
Washington State University. Stavros Vougioukas (svougioukas@ucdavis.edu) is a Professor with the Department of 
Biological and Agricultural Engineering at the University of California, Davis. Stephen Devadoss 
(stephen.devadoss@ttu.edu) is an Emabeth Thompson Endowed Professor with the Department of Agricultural and 
Applied Economics at Texas Tech University. Santosh Bhusal (santosh.b@hcr.farm) is with Harvest Croo Robotics. 
 
Acknowledgments: The authors gratefully acknowledge the valuable comments of the anonymous reviewers. This 
work was supported by USDA-NIFA Grants 2020-67021-30759 and 2020-67021-32428, the National Science 
Foundation, and the USDA-NIFA through the “AI Institute for Agriculture” Program (Award No. AWD003473) and 
USDA-AMS Specialty Crop Multi-State Grant Program (Award No. K3055). 
  

http://www.choicesmagazine.org/
https://uflorida-my.sharepoint.com/personal/guanz_ufl_edu/Documents/ZFG2021/Service2/CHOICES%20EDITOR/Themes/Bampasidou%20final/Proofs/Returned%20by%20author/manoj.karkee@wsu.edu
https://uflorida-my.sharepoint.com/personal/guanz_ufl_edu/Documents/ZFG2021/Service2/CHOICES%20EDITOR/Themes/Bampasidou%20final/Proofs/Returned%20by%20author/svougioukas@ucdavis.edu
https://uflorida-my.sharepoint.com/personal/guanz_ufl_edu/Documents/ZFG2021/Service2/CHOICES%20EDITOR/Themes/Bampasidou%20final/Proofs/Returned%20by%20author/stephen.devadoss@ttu.edu
https://uflorida-my.sharepoint.com/personal/guanz_ufl_edu/Documents/ZFG2021/Service2/CHOICES%20EDITOR/Themes/Bampasidou%20final/Proofs/Returned%20by%20author/santosh.b@hcr.farm

